Lattice Homomorphisms Induced by Group Homomorphisms

نویسندگان

  • DONALD G. HIGMAN
  • D. G. HIGMAN
چکیده

Introduction. By a lattice homorphism of a group G onto a group G' we mean a single-valued mapping of the lattice L(G) of subgroups of G onto the lattice L(G') of subgroups of G', which preserves all unions and intersections, that is, which is subject to the conditions 1. (U,S,)0 = U,(S¿), 2. (r\vSr) = Ç)ASd>), for every (finite or infinite) set of subgroups 5„ of G. We call proper any lattice homomorphism which is neither a lattice isomorphism (1-1), nor a trivial lattice homomorphism (S<p = 1 for every 5 in L(G)). The general problem which now presents itself is the characterization of those (subgroup) lattice mappings which are proper lattice homomorphisms, and of those groups which admit proper lattice homomorphisms (cf. Whitman [l],2 Zappa [l] and [2], and Suzuki [l]). A specialization of this problem arises when we consider a lattice mapping which is induced by a (group) homomorphism. It is easily seen that such a mapping preserves unions. Under what conditions will it be a (proper) lattice homomorphism? The main concern of this note is the characterization of those homomorphisms which induce proper lattice homomorphisms, and of those groups which admit such homomorphisms. A further specialization occurs in connection with a method suggested by G. Zappa for constructing lattice mappings which preserve intersections. Let ii be a proper subgroup of a group G. Then the mapping \p of L(G) onto L(H) defined by

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ideal of Lattice homomorphisms corresponding to the products of two arbitrary lattices and the lattice [2]

Abstract. Let L and M be two finite lattices. The ideal J(L,M) is a monomial ideal in a specific polynomial ring and whose minimal monomial generators correspond to lattice homomorphisms ϕ: L→M. This ideal is called the ideal of lattice homomorphism. In this paper, we study J(L,M) in the case that L is the product of two lattices L_1 and L_2 and M is the chain [2]. We first characterize the set...

متن کامل

An equivalence functor between local vector lattices and vector lattices

We call a local vector lattice any vector lattice with a distinguished positive strong unit and having exactly one maximal ideal (its radical). We provide a short study of local vector lattices. In this regards, some characterizations of local vector lattices are given. For instance, we prove that a vector lattice with a distinguished strong unit is local if and only if it is clean with non no-...

متن کامل

Counting Restricted Homomorphisms via Möbius Inversion over Matroid Lattices

We present a framework for the complexity classification of parameterized counting problems that can be formulated as the summation over the numbers of homomorphisms from small pattern graphs H1, . . . ,H` to a big host graph G with the restriction that the coefficients correspond to evaluations of the Möbius function over the lattice of a graphic matroid. This generalizes the idea of Curticape...

متن کامل

Ring structures of mod p equivariant cohomology rings and ring homomorphisms between them

In this paper, we consider a class of connected oriented (with respect to Z/p) closed G-manifolds with a non-empty finite fixed point set, each of which is G-equivariantly formal, where G = Z/p and p is an odd prime. Using localization theorem and equivariant index, we give an explicit description of the mod p equivariant cohomology ring of such a G-manifold in terms of algebra. This makes ...

متن کامل

Hyers-Ulam-Rassias stability of n-Jordan *-homomorphisms on C*-algebras

In this paper, we introduce n-jordan homomorphisms and n-jordan *-homomorphisms and Also investigate the Hyers-Ulam-Rassiasstability of n-jordan *-homomorphisms on C*-algebras.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010